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AN EXAMINATION OF MODELS OF RELAXATION IN COMPLEX SYSTEMS
L Continuous Time Random Walk (CTRW) Models

A. Introduction

We initiate here a detailed examination of existing models of relaxation

in glass-forming materials. In general, our considerations will include: (i)

the robustness of the models; (2) technical procedures employed; (3) physical

tests of assumptions; (4) predictability. A model is robust if it is insensi-

tive to untestable or omitted details while being consistent with tests of

premises and established facts. The predictability of a model is determined

by its capability to generate new predictions that are actually verified

empirically.

In this report we consider relaxation models [1,2] based on the continuous

time random walk (CTRW) formalism [3]. In these models, mobile random walkers

identified as defects move on a lattice in a sequence of steps and pauses, and

cause relaxation of the entities of interest which are located at lattice

points. The entities of interest will be designated the relaxors. The basic

function entering into these models is the pausing time distribution (t)

which must be specified either by assumption or by a further model within a

model. Although the nature of the defects and the physical mechanism of

defect-relaxor interaction is left unspecified, the models based on CTRW do

include an assumption about whether N, the number of defects per relaxor, is

large or not.

As will be discussed below, for a given ((t), different relaxation func-

tions are obtained depending on which of the above assumptions about N are

made (4,5,6]. Since typically no information is provided on the identities of

Manuscript approved October 31, 1985.
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the defect and the relaxor, either assumption must be considered ad hoc physi-

cally. However, there are physical systems which are also glass-formers and

have mobile entities which can be considered as random walkers in a CTRW

framework. Such physical situations provide a useful testing ground for the

validity of the assumptions used in relaxation models based on CTRW. Then the

CTRW models can be evaluated according to the considerations mentioned above:

(1) Their robustness can be tested on the basis of the sensitivity of the

dependence of the calculated relaxation function on the assumption made for

form of the pausing time distribution ((t), and also on the assumption made

for N, the number of defects per relaxor. (2) Their technical soundness can

be assessed by careful evaluation of the assumptions used and modelling pro-

*posed for d,(t). (3) The general assumptions can be tested physically by their

consistency with observed phenomena in physical situations that involve random

walkers. (4) Predictability can be tested by either the comparison of pre-

dicted phenomena with observed results or the absence of descriptive power in

dealing with established phenomena.

The relaxation model based on CTRW proposed by Shlesinger and Montroll

(SM) [I] which is a generalization of earlier defect diffusion models of

Glarum and others [7] is representative of the class of CTRW relaxation

models. We will focus attention on the SM model. A representative example of

modelling of c(t) has been provided by Bendler and Shlesinger (BS) [2], and

this work will also be reviewed in detail.

B. Robustness

As mentioned above, a model of dielectric relaxation based on CTRW has

been promulgated by Shlesinger and Montroll (SM) [1]. This model is a gener-

alization of the defect diffusion models of Glarum and others [7] which assume

that the physical system contains two types of physical species: frozen

2



dipoles and mobile defects. On reaching the site of a frozen dipole, a mobile

defect causes the dipole to relax. That is, a contact interaction between

dipole and dipole is assumed but no physical mechanism is specified.

In the SM model, a frozen dipole is at the origin of a lattice and, at

t-O, the defects lie with equal probability at any lattice point. Diffusion

of the defects is executed as a continuous-time random walk [3] composed of a

sequence of steps and pauses. The pausing time distribution function p(t) is

assumed to have a power law form at sufficiently long time

, (t)~At-l-a, 0<a<l, t- ()

The complete distribution function must be normalizable

oJfdtq,(t) - 1. (2)

0 Obviously, the form of Eq. (1) cannot be extrapolated back to short times and

still satisfy the normalization requirement of Eq. (2). The form of ((t) at

short times has not been specified in the model. As will be detailed below,

the model [11 then commits to the assumption that N, the number of defects per

dipole, is large. The defects and the dipole are not assigned explicit physi-

cal identities. Therefore, any assumption concerning the relative number of

defects (e.g. large, equal, etc.) to dipoles or relaxors does not have a

direct physical basis. Sensitivity to the assumption about relative number of

defects that will be shown to exist reveals one lack of robustness in CTRW

models.

SM follow Tachiya [6] in the derivation of the equation for the survival

probability of dipoles. Let Nd be the number of frozen dipoles in a polymeric

system or a glass of volume Q. The system is divided into Nd identical unit

cells each of volume Qd=Q/Nd, and each containing one frozen dipole and N

defects. Each dipole is fixed at the origin of its unit cell and, excluding

the origin, there are V lattice points for each unit cell. The N defects in

3

-



each unit cell are treated as independent and are totally randomly distributed

on the V lattice sites. Periodic boundary conditions proposed by Shlesinger

[5] are used in each unit cell such that if a defect leaves the cell, it is

effectively replaced so that the proper defect number N in each unit cell is

maintained. Let f(l,t) be the probability density that a defect originally at

a lattice point I reaches the origin for the first time at time t. Then

[1- Oftdttf(l,tI)] is the probability that this defect has not reached the

origin in the time interval (o,t). The defects are treated as independent so

so there is a tacit assumption that they are non-interacting and there are no

correlations among the defects. The quantity N [1- ftdttf(.it')] is the

probability that none of the N defects has reached the origin in the time

- interval (o,t). Averaging over the initial uniform distribution of defect

positions gives an expression for the survival probability of frozen dipoles

(the relaxation function 0(t)) as

1 tdt'f('t')]N_[-_ tdt'I(t,)IN
V 1t0 V 0(3)

Here I(t)= Z f(l,t) is the flux of defects into the dipole. This result has

been derived as Equation (20) in Reference [5] and equation (3.5) in Reference

[6], and written as Eq. (8) in the work by SM. Now we come to a step in which

a critical assumption about the size of N has to be made.

If the number N is large, the right hand side of Eq. (3) can be approxi-

mated by an exponential function. With constant defect concentration c-N/V as

N-=, V-), the dipole relaxation becomes

*(t) - exp[-c ftdt'l(t')1 (4)
0

SM complete their dielectric decay model by relating the flux 1(t) to the

pausing time distribution q(t) of the defects. The relation between the

Laplace transforms of I(t) and ((t), namely 1(u) and c *(u), turns out to be

4
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1(u) - [, (5)

where the specific form of the function P(o,z) depends on the type and

dimension of the lattice. SM have only evaluated 1(u) for small u which

corresponds to the long time regime. They cannot address the short time

regime because only the long time behavior of (t) has been specified. For a

simple cubic lattice in three dimensions, the SM method of evaluating 1(u)

leads to I(u)=0.659u-a/A for small u. This is given by Eq. (27) in [1]. This

leads to

I(t)~ta- l , t- . (SSM)

However, in an earlier work on the electron scavenging problem, Shlesinger [5]

used an expression which is completely equivalent to Eq. (3) and where

* (t)tl- - as t -. In this earlier work, the expression for 1(u) for small u

was evaluated in a different way and Shlesinger obtained I(u)-l-Bua for small

u. This is given by Eq. (17c) in [5] where F(u) in [5] is proportional to

1(u) here. Shlesinger uses this to obtain the relation lim I(t)-lim 4(t), so

that

I(t)~t- a- I , t+- (5S)

The result for I(t) as t+ is quite different depending on whether I(u) is

evaluated at small u by the method of SM or by the earlier method of Shlesin-

ger. Since both these asymptotic expressions begin from the same equations,

it is incumbent upon these authors [1,5] to clarify which method for obtaining

* 1(u) for small u is appropriate.

If the SM expression Eq. (5SM), I(t)-ta-l as t-, is used in Eq. (4), we

* find

(t)~exp(-clta) , t O (6)

where cl = 0.659c/(r(a)r(1-a)A ). The SM model thus leads to the stretched

exponential for 0 but one that is only valid as t+-, i.e. at the tail end of
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the stretched exponential. Note that if the earlier Shlesinger expression

Eq. (5S), I(t)~t- a- I as t-*-, had been used in Eq. (4), we would have obtained

0(t) ~exp (-c2t-a) t -0- (6S)

instead of the stretched exponential Eq. (6).

The stretched exponential Eq. (16) for both short and long times was first

proposed by Kohlrausch [8] in 1847. This is now often referred to as the

Kohlrausch-Williams and Watts (KWW) function [9]. Incidentally, the asymcotic

large t behavior of 0(t) as given by relation (6) was actually derived earlier

by Hamill and Funabashi [4] using the same tail for p(t) as in Eq. (1) and the

same conditions including N>> for the electron scavenging problem [10]. How-

ever, Tachiya [6] has shown that the Hamill-Funabashi model involving diffu-

* sion of either the trapped electron or the acceptor molecule is not relevant

for explanation of the unusual kinetics of trapped electron decay. Tachiya

maintained that a tunneling mechanism proposed earlier and which invokes

direct electron transfer from trap to acceptor [6,10] is the correct one. In

any event, such a mechanism can be used to explain the experimental data [10].

It is important to emphasize that the limited result of an asymptotic KWW

function obtained by the SM model is even further weakened if N is finite and

not actually taken to the limit N-*- for fixed c-N/V. For finite N, we must

return to Eq. (3). If the t- l- a tail in Eq. (1) is valid for times greater

than some time t*, then we can use the previous result of SM, Eq. (5SM), that

<' I(t)a - I for t>t* to express (t) in Eq. (3) as

*()=[1-. _ cl tN ,t<~

Here z - c ft*dt'I(t')-Clt*a. Recall that, according to the SM model, the
01 z Cl a

quantity in the brackets [1- - t ] represents the probability that the

1
defect has not reached the dipole at time t. For t>t**-[(N-z)/cl]', this

survival probability would become negative so that the formalism cannot be

6
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applied. Therefore, when N is finite, Eq. (7) is restricted in its applicabi-

lity by both a lower and an upper time limit: t*<t<t**. This is an inherent

problem for the SM model with finite N. For sufficiently large but fixed N,

it is possible for Eq. (7) to approximate a KWW function over some time regime

between the limits t* and t**. Tachiya has pointed out [6) that, whatever the

value of N, the approximation of [1- j]N to exp(-x) becomes increasingly worse

as x-). Therefore, for fixed large N, the time interval over which Eq. (7)

approximates a KWW function depends both on the value of N and the values of

t* and t**. And when N is not sufficiently large, Eq. (7) will not approxi-

*mate a KWW function at any time, even between the limits t* and t**.

An interesting special case of Eq. (7) occurs for N=l, i.e. when there is

*O only one defect per relaxor. Then the relaxation function is given by

0(t) = [l-z-clta] (7a)

Just as Eq. (7) this result follows from Eq. (5SM) (Eq. (28) of SM). An alter-

native procedure for evaluating I(t) was used earlier by Shlesinger [5] which

leads to Eq. (5S) (Eq. (22) of Ref. [5]). Shlesinger rewrote Eq. (3) as O(t)-

i(-)d which is Eq. (20) of Ref. [5] for N or M=l. This expression together

with the asymptotic relation lim F(t) = VW lim 4(t) leads to

0(t) a t-Z , t+- (7b)
_ .N

(Eq. (30) of Ref. [5]), this result is reiterated by Shlesinger as Eq. (21) in

a more recent Reference [Ib]. Thus, we see from Eqs. (7a) and (7b) that two

- difterent expressions are obtained depending on which of the two computational

procedures is used. Advocates of CTRW models then must make clear which pro-

cedure is actually appropriate. Shlesinger [Ib] attempted to show the rele-

vance of Eq. (7b) to actual experimental observations. He quoted a decay

which has the form of Eq. (7b) with a=O. 3 due to electron-hole recombination

in sputtered a-Si:H. It should be noted that Shlesinger's calculations [5]

leading to Eq. (7b) as well as the other calculations quoted in Sec. 4 of Ref.

7
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[ib] are based on the assumption of unimolecular reactions. On the other

hand, the experimentalists in Ref. [25] of Ref. [ib] have explicitly stated

that electron-hole recombination in a-Si:H is a bimolecular process. This

conclusion is based on measurements of the laser intensity dependence. Comr-

parison of bimolecular data with results of a unimolecular model surely cannot

be used to resolve the dilemma posed by the two alternatives for computational

procedure.

There is a drastic difference in the long time dependences of the relaxa-

tion function predicted by the SM model depending on the value of the number

of defects per frozen dipole N. Thus the long time dependence of the relaxa-

tion function obtained in the SM model is not robust against the choice of N.

o Further, it does not seem possible for SM to make an estimate for the size of

N in any real glass or polymer system because the identities of the defect and

the frozen dipoles have not been specified for any system. Before the SM

model can be accepted as a general explanation for KWW relaxation, validity of

the condition of N>>l must be checked for each glass and polymer system. In

"'5 fact, there are many real glass systems in which the size of a dipole is comr-

parable to that of the smallest molecular unit. in each of these cases, it

would be difficult to visualize mobile defects which are far more numerous

than dipoles, and it is not likely to have N>>. The SM model would then lead

0 to a relaxation function whose tail has the dependence (7) which is not KWW

like.

In order to specify the time scale for the onset of the KWW behavior, the

full r(t) is needed and not just its long-time behavior. It also should be

*, noted that the SM model does not derive the KWW function from fundamental

properties of dynamical equations of motion. Within the model, the power law

ta in the KWW function Eq. (6) is related to an assumed power law t-1 - in the

8V
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pausing distribution Eq. (1). One power law is simply traded for another.

Even if the N>>l hypothesis could be justified for some systems, physical

insight into the KWW form would require physical insight into the 4(t)

function. Further, tWW relaxation is observed in many other relaxation pro-

cesses besides dipolar relaxations of amorphous polymers and glasses. For

example, it has been accurately established for thermoremanent magnetization

in spin glasses [11-13], where we can hardly think of defects and diffusion

processes. There seems to be no basis for the introduction of a pausing time

distribution c(t) in this case.

The discussions of this section have revealed that the derived relaxation

function depends sensitively on the assumption of the form of p(t) and on

whether the condition of N>>l is satisfied. The choice of the pausing time

distribution of the form (t)-t-l-a for long times will be shown in a later

section to contradict direct experimental evidences in the closely related

problem of hopping ions in glass systems. The picture of mobile diffusing

defects is very specific but is immediately inapplicable in the closely

related problem of spin glasses which has been experimentally observed to

follow a full KWW form (11-13]. Therefore, we conclude that the SM model and

other CTRW based models are not robust in their invocation of a specific ad

hoc pausing time distribution, in their requirement for a very large ratio of

defects to relaxors and in the absense of physical counterparts for the com-

ponents of the models.

C. Technical Results

In this section, we shall follow the SM and Bendler-Shlesinger (BS) [2]

models and work out some of their technical consequences. From these results

we will show explicitly that these models can be used to derive a relaxation

*function which must depart from the KWW form except in the tail portion of the

9
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relaxation function. The early and major part of the derived relaxation func-

tion will not have the KWW form in disagreement with experimental data.

In [I], SM motivate the asymptotic form of the pausing time distribution

in Eq. (1) by referring to a similar hypothesis used earlier [14,151 in dis-

persive transport in semiconductors[16]. One of the models used to produce a

( (t) with a t- I- a tail in dispersive tranpsort was a distribution of activated

barriers [17]. The distribution of barriers leads to a distribution of rates

p(X) which determines ((t) as

_(t) f _r%2 X exp(-Xt)p(k)dX (8)

Recently, Bendler and Shiesinger (BS) [2] have advocated using this as a model

within the SM model to provide a normalizable pausing time distribution func-

* tion. A thermally activated jump rate in the presence of a single free energy

barrier Fo, Xo=kXexp(-Fo/kT), is modified by the entropy and energy fluctua-

tions generated by local neighboring rearrangements: 6F = 5E-T6S. For sim-

plicity the linear relation 6S - a6E is assumed by BS. As a further assump-

tion 6E is taken to have exponential distribution. A generalization of the

distribution used by BS can be written in the form

exp(-q6E) , O<6E45E2

g(5E) = A exp(+q6E) , 6EI<6E<O

0 , 6E>6E2 , 6E<6El (9)

* Here A is a normalization constant. The normalization of g(6E) insures the

normalization of ((t) in Eq. (2). BS actually specialized Eq. (9) by assuming

6EI-0 and 6E2 =-. In other words, they cut off the negative fluctuations with-

out physical justification. More general distributions of the form Eq. (9)

had been studied over twenty years earlier by MacDonald [18] in the context of

modelling mechanical relaxations. Using p(X)-g(5E)d6E/dXJ in Eq. (8) leads
0

S to
°  c %[tUlduu exp(-u-)+u 1duua exp(-u ).j (10)

10
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" where r-Xot, a =kTq/ (1-dT), ul-exp[-q6El/a], u2 =-exp [-q 6E2/a], and

ca:a/[2-ul-a-u2 a].

Equation (10) provides an expression for 4,(t) that allows examination of

4" the properties of the SM model. The BS choice 6EI=0 and 6E2= corresponds to

ul-l and u2=O. With this choice, the asymptotic expansion of Eq. (9) at long

times yields p( )/Xo~ar(l+c)- l - a, which is a power law tail as required by
N

4 the SM model (as long as a=kTq/(l-dT)<l). As discussed in Section B, this

leads only to the tail end of the KWW function of Eq. (6) with

Cl M [0.659c/ar(a)r(l-a)r(l+a)]xa (11)

To examine the timescale for the onset of the T-1 -a tail of the p(-r) given

by Eq. (10) we have evaluated Eq. (10) numerically for several values of a.

* Fig. 1 shows the calculated (kQ)/Xo for a-0.5 with the BS choice ul=l, u2-0.

The dashed curve shown is the asymptotic expression aF(l+a)U- l - a , which

approaches the calculated (dj)/Xo values (solid curves) near T=4 . As a meas-

ure of the meaning of this onset time, we have also computed the median time

Tm, defined by?1 1 =ftm d ¢(t)/X 12

2 o o (12)

The median time divides the total weight of the d(-r) distribution, giving

exactly half the weight for the short time region T<Tm and half the weight for

the long time region T>Tm . The curve in Fig. 2 is shaded for times up to Tm"

Notice that (T) assumes the T- l - a form only beyond r,. Since the SM model

with p(T) modelled by BS can arrive at a KWW tail when i(-r) approaches the

asymptotic T-l- long time tail, this means that over half of the relaxation

*will have decayed according to a function with time dependence which departs

strongly from IW. On the other hand in reality the KWW function gives a good

description of the entire physically measured relaxation of a dipolar entity.

*Let us use the example of the primary relaxation in polyvinylacetate as quoted

y1



by SM. The experimentally measured quantity is the frequency dependent die-

lectric function *(c)=c'(w)-i "(w). In the theory of dielectric relaxation:

f* 'odt e-iwt [-de/dt] (13)

The polyvinylacetate experimental e*(w) data is well fit by Eq. (13) with a

KWW function of Eq. (6) having the (slightly temperature dependent) frac-

tional exponent a=0.56 [19]. Moreover, the fit covers significant frequency

ranges on both sides of the frequency wp of the dielectric loss peak. The

experimental frequency range is wide enough to cover essentially the entire

relaxation process from beginning to end. However, the SM model will not

produce a KWW function for T<Tm and therefore the model will not fit the

dielectric £'(w), E"(w) data at least for the high frequency side of w. This

can be understood from the fact that Wp for the KWW function corresponds

approximately to the time at which the decay has reached 1/e of its initial

value. This disagreement of the SM result for the high frequency side of the

dielectric relaxation function also occurs for the primary relaxations of

* supercooled liquids and polymers studied by Williams and Watts themselves

(9,201.

Dielectric relaxation can be carried out in the time domain by measurement

of discharge of the depolarization current for a wide range of dielectric

materials. The current in the short time domain follows the power law of time

dependence.

i(t) a t-n (14)

This form of the dielectric response has been known since the turn of the

nineteenth century under the name of the Curie-von Schweidler law [21,22]. At

longer times, the time dependence of the current departs from Eq. (14). From

the formalism of dielectric relaxation, i(t) a d4/dt. The classic Curie-von

Schweidler law is consistent with the KWW form Eq. (6), because do/dt-

12
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-aclta-lexp(-C lta) and at short times the ta-l factor dominates. This demon-

strates how essential it is for any dielectric relaxation model to capture the

entire KWW form over both the short and long time regions. Zwanzig [23] has

emphasized this in his comment on another model.

It is interesting also to consider the effect of modifying the choice for

g(5E) in the BS model on the median time. We have calculated Eq. (10) numeri-

cally for the distributions Eq. (9) with 6E 2 =ac and various values of 6El<O,

which corresponds to u2-0 and ul>l. Including contributions with 6E1<0 fur-

ther delays the onset of the 1ela tail beyond the median time. Fig. 2 shows

the calculated 1()/%o corresponding to the case where the fraction of the

weight of g(5E) with 5E<0 is f_-0.45 (i.e. nearly symmetric in positive and

* negative fluctuations). The asymptotic power law tail is again shown by the

dashed curve. The onset of p( ) to the power law tail is delayed even further

beyond the median time Tm as compared to the f =0.0 case in Fig. 1. As shown

in Fig. 3, the value of rm in fact decreases rapidly as the 5E<O contributions

occupy more weight in the g(6E) distribution, i.e. as f increases. However,

they do not contribute to the T-i-a tail except in the normalization prefac-

tor: p(T-) a(l+)(2-f)T- 1- . This modified prefactor moves the onset of the

power law tail to shorter times, but not as rapidly as the decrease ot TM.

The result is that as the fluctuations 5E in g(6E) are allowed to become more

0 symmetrical, the SM model produces a relaxation function that coincides with a

KWW form over a steadily diminishing tail portion of the dielectric relaxation

curve. This situation is further exacerbated if the positive fluctuations are

0 truncated at a finite value of 6E2 , and also if a is increased. Thus the SM

model with F(t) in turn modelled by BS, even aside from the status of its

assumptions, can only lead to a relaxation function that coincides with the

0KWW form in a long time regime that cannot coincide with the full time regime

in which the observable relaxation occurs.

13



As seen in Eqs. (6) and (11), the IWW relaxation time r*, defined by re-

writing the KWW form as (t)-exp[-(t/T*)a] is calculated by BS to be t*-4o - 1.

BS state that ()/Xo goes to a constant, 4(o)/Xo-a/(l+a), for r<l. If

(t)=ao/(l+a) at short times, then Eq. (5) leads to I(u)=axoU-I/(l+a) at

large u for any lattice. This produces a short time exponential decay as

claimed by BS. In particular, 4(t)=exp(-t/to) with 0=(l+a)Xg
4 /ac. This

would lead to the prediction T* a To, which disagrees with a wide range of

experimental data [24-26]. Note from Fig. 1 that ((T)/Xo is really not con-

stant for -<l as stated by BS, but instead decays by almost 60% of its initial

value during this interval. The initial decay of ((T)/Xo becomes even steeper

if 6E<O is allowed as in Fig. 2. Therefore, the short time behavior predicted

by BS model will not actually be an exponential decay for the g(6E) distribu-

tion as chosen by them.

The unsatisfactory nature of the SM model with ((t) as modelled by BS in

deriving only a tail portion of the IWW form is not unique to the activated

barrier model for 4(t). Any p(t) with an asymptotic T- 1- a tail will produce

the same problems as discussed above. For example, in an earlier discussion

in the context of dispersive transport, Shlesinger [15] adopted a Levy stable

function in time (see Appendix A of Ref. [15]) for q,(t). This has the pro-

perty that the Laplace transform of p(t) is a fractional exponential in the

Laplace transform variable u: L[((t)]-exp[-(u/Xo)a]. Here XO is a rate para-

meter that is distinct from that used in the barrier distribution model. For

example, when a-0.5, the corresponding form of p(t) can be written analyti-

cally: 4(t) - exp[-1/4Xot]/27nT(it). This is properly normalized and has a

long-time t 1 - tail. Indeed, the only physical rationale implied for the

choice of the Levy stable function is that it has the appropriate long-time

tail. We have calculated this ((t) with a-0.5 and the results are shown in

14
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Fig. 4. Again, the onset of the T-1-a tail is found to be beyond the median

time Tm-. Note that a Levy stable function in time for p(t) is quite different

from the use of stability for the frequency spectrum of $(t) as discussed by

us elsewhere (27]. Recall that we have shown that the relaxation functions

derived by SM and BS cannot explain the short time regime of the KWW function

which is observed so widely that it is called the Curie-von Schweidlr law.

For the same reason one might question also the claims in Refs. [14,15] that

the characteristic t-l+ a dependence of the transient current in dispersive

transient transport in chalcogenide glasses [17] for t<<tT, the transit time,

can be explained by a (t)-t-l-a at long times in CTRW framework.

In this section, the technical results were carefully carried out and

examined in detail. We found that the result of all the modelling of 4 (t)

[1,2] will produce relaxation functions which coincides with the KWW only over

a tail portion at long times. This contradicts the dielectric relaxation data

in the time domain (Curie-von Schweidler law) as well as the frequency depen-

*dence of the measured dielectric function e*(w) first given by Williams and

Watts themselves [9,20]. We conclude that the technical results of the SM and

the BS or any of the presently proposed models for q(t) do not produce the

entire KWW form. Thus, CTRW models of relaxation do not provide a satisfac-

tory basis for description of physical phenomena.

D. Physical Tests of Assumptions

One of the key assumptions of the SM model is that the pausing time dis-

tribution has a t- I- a tail. The repeated advocation of the t-l-a form [1,2,

14,15] gives the impression that it is generally applicable to different ran-

dom walkers in many different systems. We have found physical systems which

are glass-forming materials and have mobile random walkers. The pausing-time
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distribution 4(t) applies directly [28,29] in these systems, if the experimen-

tal data is interpreted in a CTRW framework [3]. However, we must emphasize

that a CTRW framework is not required to interpret the experimental data.

Nonetheless, if a CTRW framework is used, it can be put to a clean test in

such systems.

To do this we examine electrical relaxations due to ionic diffusion in

glasses above and below the glass transition temperature. It was recognized

by Moynihan, Macedo and co-workers [28,291 that for electrical relaxations in

dielectrics containing a substantial concentration of mobile charges, the

appropriate physical picture is the decay of the electric field E at constant

displacement vector D. In contrast, relaxation of permanent dipoles is char-

acterized by the decay of D under the condition of constant E. The decay of

the electric field is due to diffusion or migration of the mobile ions and may

be described by

E(t) - E(o)y(t) (15)

where y(t) is a decay function. If the mobile ions are described as random

walkers in the continuous time random walk formalism, then (P(t)--dy(t)/dt.

That is, the rate of decay of the electric field is a measure of the pausing

time distribution of the mobile ions. Experimentally, systems including

alkali network oxide glasses, fused salts, and concentrated aqueous electro-

lyte solutions have been studied for electric field relaxation [27-32].

Let us focus our attention on the alkali silicate glasses. There are no

permanent dipoles in these systems and dielectric relaxation is due to diffu-

*: sion of the alkali ions. Since there are no frozen dipoles in an alkali sili-

cate glass and only a diffusing species, we have a direct test of the

cj(t) a t-l-a hypothesis of the SM model. We need not worry about the validity

0 of the subsidiary hypotheses of the model. If we take the SM model seriously,
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in particular that the t-l - a pausing-time distribution is very general, then

the diffusion of the alkali ions should be well described by Eq. (1). How-

ever, experimentally it has been found repeatedly [28-32] that the decay

function -dy(t)/dt in Eq. (14) is not t- l- a but remarkably is itself the time

derivative of a KWW fractional exponential function. Examples include alkali

silicate and borate glasses, a glass-forming 40mol% Ca(N03)2-60mol% KNO3 melt,

Na beta alumina, LiCI electrolyte solutions and others [28-32,24]. These are

examples of KWW decay involving only diffusing species. This means that if we

wish to use a pausing time distribution to describe these experiments, it must

have the form (t)=-dy(t)/dt=(at-i/t*a)exp(-(t/ *]a). This obviously does

not have a t-l - a long time tail. Thus the claim of generality of a t- l- a tail

in the pausing-time distribution is not supported by experimental data on

electric field relaxations due to diffusing ions in glasses.

The failure of a $(t) with a tl-a tail to describe experimentally the

diffv, ing ions can also be seen explicitly by calculation of a corresponding

frequency spectrum known as the electric modulus, M*(w). This is the inverse

of the dielectric function, M*(w)=l/e*(w), and is related to ((t) by

M*() - M'(W)+iM"(W) - M[l-o0fdte-it(t)] (16)

Experimentally [28-32], M"(w) shows a characteristic asymmetric broad peak

which is skewed toward high frequencies. The data can be fit very well if

p(t) is taken to be the derivative of a KWW function [28-32]. Now let us com-

pare this with the results of the SM model with d(t) as modelled by BS. Using

the activated barrier distribution model for ((t), Eq. (10), we find

M'(w)/MX 1-c FI/Udu u ul+(a- uI u2u2 u2+ (17)

u-a 1 ua
u.2+02 +u uu

-M"()/M - c Qi frldu u + du u
a LiUu 2+g2- (18)

where Q-w/Xo. We have evaluated Eqs. (17) and (18) numerically for different

choices of the distribution Eq. (9). The calculated M"(w) shows the peak near

17
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w-ko but the shape of the curve disagrees with experiment. If the fluctua-

tions 6E are symmetric in positive and negative contributions (i.e., ulf2 - l)

the calculated M"(w) curve is symmetric about its peak. This is shown in

Fig. 5. On the other hand the experimental M" curves are skewed as shown in

Fig. 7. If we follow BS and remove all negative fluctuations, emphasizing the

power law tail as much as possible, then the calculated M"(w) curve is asym-

metric as shown in Fig. 6 but skewed in the opposite way from the experimental

curves. Hence the BS model of ((t) based on a distribution of barriers with

only positive fluctuations as well as more physically reasonable models of

p(t) which have symmetric fluctuations all disagree with the experimental

measurements. Therefore, diffusing species in glass forming systems are not

* generally described by a t- l - a tail. The hypothesis of the SM model that (t)

.of a yet unspecified defect has a t-l- a tail thus becomes questionable.

There is another difficulty in using a defect diffusion model for relaxa-

tion in realistic glass forming materials. In many glasses and amorphous

polymers [33], several relaxations of different nature are present in the same

I system. It has been demonstrated that even small molecule glasses have both

primary and secondary relaxations [34]. Often the different relaxations in

A the same system all have the KWW form, although each has its own own charac-

% teristic fractional exponent a [35]. This is known to proponents of the CTRW

based relaxation models. In fact they [36] have fit the experimental data of

a secondary relaxation of a small molecule glass to the WW form and claimed

good agreement. Consider, for example, glassy polycarbonate. There are at

* least three distinct relaxations traditionally labelled alpha, beta, and gamma

[37,33]. The alpha and gamma relaxations have been extensively studied

[33, 35,37,38], and they both have the KWW form but with quite different

values for the fractional exponent: a=0.4 for the alpha relaxation [35] and

e.
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a--0. 2  for the gamma relaxation [38]. Many other such examples can be cited.

*This type of example presents a difficulty for the SM model, because the value

of a in the KWW tail derived is the same as that in the hypothesized t- l-a

tail of the pausing-time distribution of the diffusing defect, Eq. (1). In

order to account for two different KWW exponents observed in the same physical

system, the SM model would require two different types of diffusing defect,

each with a different t- l-a tail. Furthermore, defect 1 (2) must be required

to interact only with dipoles of the alpha (gamma) relaxation but never with

the gamma (alpha) relaxation. Such a requirement seems very difficult to jus-

tify on physical grounds.

E. Predictability

* An important aspect of predictability is whether significant phenomena

Sthat occur empirically are predicted or at least included in the phenomenology

* of the model. We have seen the models of relaxation based on CTRW have not

predicted an entire KWW function but rather a relaxation function that ap-

proaches a K=W form exp(-clta) only at the tail end. Therefore, they [1,2]

cannot even claim that their models predict a genuine KWW relaxation function.

One of the assumptions that has to be made is the pausing time distribution

((t) having a long time tail of t- l-a. Since the KWW relaxation function is

generally observed, a fact subscribed by authors of these CTRW models, logi-

cally the key assumption of t)-tl- must be at least or even more ubiqui-

tous. The electrical relaxation data of many glass-forming systems (Section

D) demonstrate that the latter is not true. Hence this key assumption is

questionable. Thus, at the expense of at least one ad hoc assumption, the SM

model has predicted only part of a KWW relaxation function. There are no

other concrete predictions or further applications.
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The BS model, with the assumiption of a one-sided fluctuation of energy

4 barrier heights with an exponential distribution does provide an additional

prediction. There, the quantity a in the t-l-a tail of i (t) becomes tempera-

ture dependent and the exponent a of the predicted tail of the K4W function,

exp(-clta) will also be temperature dependent. Let us compare this prediction

with experimental data. Actaully there is no completely consistent way of

making such a comparison. The experimental data show that the relaxations are

entire KWW functions, while the BS model predicts only relaxation functions

whose tails are KWW like (see Section C). Even when we ignore this problem of

the BS model, experimentally there are glass-forming materials such as Si-0 2

(391, polystyrene [40], polyethyl acrylate [41], etc. for which the fractional

*• exponent a of the entire KWW relaxation function in each case remains constant

over a sizeable experimental temperature range. The polyethyl acrylate data

is particularly wrth noting because it was obtained by Williams and Watts

themselves. McDuffie, Quinn and Litovitz [421 have studied the dielectric

properties of glycerol-water mixtures. They observed that the shape of the

relaxation function is independent of the concentration and conclude this

result is not in accord with the concept that the origin of the departure from

exponential relaxation lies in the existence of a distribution of barrier

heights in the liquid. Litovitz and McDuffie [42] compare the dielectric

rotational time with structural break-up time and point out a difficulty of

the Glarum's model [7] when applied to associated liquids. There are also

many other systems whose relaxation behavior are of the KWW form, with tem-

perature dependent fractional exponents a [43]. However, again in each of

these cases, the relaxation can be described by an entire KWW function in dis-

agreement with the predicted relaxation function of the BS model.
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There are three empirical relations of relaxation in addition to the KWW

function (which we call the first relation) that have been seen repeatedly in

experimental data. The second relates the effective relaxation time T* that

appears in the KWW form, now written as

m • (t) - exp(-(tl.Z*)a) , (19)

to a primitive relaxation time To that has a microscopic and fundamental

meaning as

(Wl-a 1/a
c o (20)

where wc is a characteristic frequency. It is important to emphasize that the

fractional exponent a and T* appearing in Eq. (20) are the same as those in

the KWW form (19). The third relation states that for the same relaxation

process, the relaxation function is an entire KWW function (19) if -o>>l but

V zcrosses over to an entire linear exponential

0(t) = exp(-tlo) (21)

if wcto<<l. The quantity To in Eq. (21) and wc in the conditions uTo<<l or

wc~o>>l are again the same as that appears in Eq. (20). The relaxation models

based on CTRW predict neither of these two extra empirically verified rela-

tions [24,26,30,31,35,38,44,45] but at best, predicts T* a To [25].

F. Summary and Conclusions

We have initiated an examination of existing models of relaxation by con-

sideration of models [1,2] based on the continuous time random walk (CTRW)

formalism [3]. CTRW is only a mathematical scheme. To address a physical

problem such as relaxation in glass forming systems described by the

Kohlrausch-Williams and Watts or KWW function, additional physical inputs are

required. These include (1) the pausing time distribution b(t), (2) the

ratio of defects to relaxors, and (3) the contact nature of the defect-relaxor
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interaction that causes relaxation. In order to obtain a physical model of

relaxation based on CTRW, these inputs must be the consequences of or derv-

able from some general physical principles and fundamental laws. This level

is not achieved in either of the two proposed models [1,2]. In the proto-

typical work by Shlesinger and Montroll (SM) [I], the choice made for the

pausing time distribution function c(t) has a t- I- a tail (o<a<l) at long times

is made. The exact nature of d (t) at earlier times before the t-l-a tail

takes over is left unspecified. An unspecified contact interaction between

defect and relaxor is assumed. Another essential assumption is that the num-

ber of defects per relaxor is large. With these hypotheses, SM have shown us

how to turn the crank of CTRW mathematics to derive a tail portion of the KWW

* relaxation function. This result depends on how l(u) in Eq. (5) is evaluated

at small u. If an earlier method for this evaluation due to Shlesinger [5] is

used, the result would be given by relation (6S), i.e. (t)-exp(-c2t-c) for

t-*, and it would not be KWW anywhere. The CTRW workers [1,5] should clarify

the methodology to be employed in evaluating l(u) for small u.

Even with the machinery used by SM, one only obtains a relaxation function

that coincides with the KWW function in a limited long time regime. The

shorter time regime in which the KWW form is empirically satisfied is not

described adequately. Thus Eq. (29) of the SM paper is imprecise. It is an

1* asymptotic equation for the behavior of 4(t) for large t and should not be

interpreted as an equation valid for all times. To make sure that this dis-

JI- tinction between an asymptotic relation and an equation is not splitting

[0 hairs, we examined the two pausing time distributions respectively modelled by

Bendler and Shlesinger (BS) [21 and by Shlesinger above, [15]. Both of these

* are distributions which have a t-l-a tail and normalized over all times. We

found that the weight of the distribution for the short time regime where Qt(t)
.
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departs strongly from the t-l-a dependence has more than half of the total

weight of the distribution. These calculations point to a serious problem

common to all existing models of relaxation based on CTRW. They have not

accomplished the primary objective of a derivation of an entire KWW relaxation

function. Their relaxation function will approach a KWW form only at times

after the quantity to be relaxed has been reduced by more than one-half or

much more than half of its initial unrelaxed value. Experimentally this

initial relaxation as well as its continuation to long times correspond

throughout to a single KWW function. This initial part of the KWW relaxation

is observed repeatedly in dielectric relaxation time domain measurements based

on the technique of charging and discharging currents. The phenomenon has

been referred to as the Curie-von Schweidler [21] law. In the frequency

domain, the same phenomenon is observed by the wide occurrence of the cn-1

frequency dependence (o<n<l) for the real and imaginary parts of the dielec-

tric function e*(w) on the high frequency side of the dielectric loss peak

frequency Wp. This feature has been emphasized by Jonscher [22,46]. It was

pointed out [35] that this feature not only follows from the KWJW function but

also from other empirical dielectric relaxation functions such as those pro-

posed by Cole-Cole, Cole-Davidson and by Havriliak-Nagami[45]. The relaxation

functions predicted by models of relaxation [1,2] based on CTRW contradicts

this well established phenomenology of dielectric relaxation.

After the assumption of (t)_t - l-a has been made, the relaxation function

obtained by CTRW depends sensitively on whether number of defects N per

relaxor is large. We have shown explicitly how the (t) deviates from the KWW

form even in a long time regime when N is finite. (See discussions following

Eq. (7)). Further, we have pointed out possible physical cases where the

assumption of very large N is untenable. This lack of robustness of CTRW
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models against choice of N is not appropriate for models designed to describe

a very general phenomenon, namely IGW relaxation.

We have also given evidence to dispel the belief that the distribution

with a t- 1- M tail have general applicability. The evidence comes directly

from experimental measurements of electrical relaxation of diffusing ions in

glass forming systems. The experimental data [28-32] clearly indicate that,

if we insist on a CTRW approach, the pausing time distribution function is the

derivative with respect to time of a KWW function, and this does not have a

t- l- a tail.

Furthermore, the CTRW models [1,2] lead to a physically untenable picture

when applied to realistic glass forming materials which have primary and sec-

* ondary relaxations and both are well described by KWW functions. The differ-

ent fractional exponents now require two types of defects each with its own

inverse power tail. One type of defect is responsible for only one type of

relaxation process and not the other. The number of assumptions and hypothe-

ses involved increases rapidly, making the applicability of the models [1,2]

* ,less likely.

All theoretical models in physics are ultimately judged by the capability

to generate new testable predictions. The models [1,2] based on CTRW at the

expense of an ad hoc assumption of the pausing time distribution function pre-

* dicts a relaxation function that only approaches a KWW function at long times.

At an initial but experimentally significant part of the relaxation, this pre-

dicted relaxation function fails repeatedly when compared with dielectric

* relaxation phenomena. There is no other sustainable prediction. In the model

by Bendler and Shlesinger [2] for $(t) there is one additional prediction.

The extra prediction is that the fractional exponent a will necessarily be a

function of temperature. However, there are a number of glass forming systems
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in which the experimentally measured a is insensitive to temperature, in dis-

agreement with this prediction.

In brief, we have examined the models of relaxation [1,2] based on CTRW.

The conclusion we reach is that they must be rejected as relevant models for

IWW relaxations in glass forming systems because they lack robustness, employ

certain questionable technical procedures, introduce general assumptions that

fail to meet specific physical tests, lead to unverified predictions, and fail

to predict or describe verified properties of 1WW relaxation.
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Fig. I Solid curve is calculated from Eq. (10) with a-0.5 corresponding to
g(6E) in Eq. (9) with 6E2-- and only positive fluctuations: f -0.0.
Dashed curve is the asymptotic power law tail. Tm is the median time,
Eq. (12). Here -nXot.
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Fig. 2 Solid curve is calculated from Eq. (10) with a-0.5, corresponding to

g(5E) in Eq. (9) with 6E2 "0 a fraction of negative fluctuations,
f -0.45. Dashed curve is the asymptotic power law tail. tm is the
median time, Eq. (12). Here r-,Xot.
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* Fig. 5 Real and imaginary parts of the electric modulus, calculated from Eqs.

(17) and (18) with a~-0.5 corresponding to g(6E) in Eq. (9) with sym-
metric positive and negative fluctuations 6E Cul-u 2-

1=2.O).
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Fig. 6 Real and imaginary parts of the electric modulus, calculated from Eqs.

* (17) and (18) with a-0. 5 corresponding to g(6E) in Eq. (9) with 8E2-W
and only positive fluctuations: f =0.0.
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Fig. 7 M" vs log f data at several temperatures for K20-3SiO2  glass annealed

at 479*C and quenched. The points are experimental data and curves
* are recalculated by us using Eq. (16) and ((t)-exp[-(t/ )a] with the

parameters a, M, and T given by Boesch and Moynihan (L.P. Boesch and
C.T. Moynihan, J. Non. Cryst. Solids 17, 44 (1975)).
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